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Transformation equations between inertial and linearly accelerated frames of 
reference are derived and these transformation equations are shown to be 
compatible, where applicable, with those of special relativity. The physical nature 
of an accelerated frame of reference is unambiguously defined by means of an 
equation which relates the velocity of all points within the accelerated frame of 
reference to measurements made in an inertial frame of reference. 

1. INTRODUCTION 

Many transformation equations between inertial frames of reference 
and accelerated frames of reference have been proposed to date (see, e.g., 
Lass, 1963; Marsh, 1965; Atwater, 1974) but all have been based upon ad 
hoc assumptions and there is no experimental evidence to verify that any of 
the suggested transformations would predict the results of observations 
made in accelerated frames. 

The present paper considers the case of accelerated systems in which 
the material energy tensor is everywhere zero, i.e., systems of negligible 
mass. Coordinate transformation equations between an inertial frame of 
reference and a linearly accelerated frame of reference are derived and the 
differences between coordinate measurements and physical measurements are 
fundamental to this derivation. As pointed out by Marsh (1965) the spatial 
and temporal coordinates of an accelerated frame of reference do not 
necessarily correspond to physical measurements made at points other than 
the origin of the accelerated system. If physical measurements are to be 
made at points other than the origin then there must be observers at these 
other points. The physical measurement of elements of space and time made 
by each of these observers within his own infinitesimally small neighbor- 
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hood must be related by the Lorentz transformations to measurements 
made in the inertial frame. Marsh (1965) gives as an example the equation 
of motion of the origin of the inertial system in terms of physical measure- 
ments made in the accelerated system. In order to obtain such an equation it 
would be necessary for an infinite number of observers to be situated in the 
accelerated system and for these observers to make measurements of the 
motion of the inertial origin if it entered their own infinitesimally small 
neighborhoods. The collected information of this set of observers would 
then give the equation of motion of the inertial origin in terms of physical 
measurements. On the other hand, the motion of the inertial origin accord- 
ing to an observer who remains at the origin of the accelerated system 
would be given by the relevant equations in terms of the coordinates of the 
accelerated system. 

It is a well known result of relativity theory that it is impossible to 
accelerate a perfectly rigid body. It is therefore to be expected that all points 
in an accelerated frame of reference which is moving parallel to the x axis of 
an inertial frame, E(x, y, z, t), will have instantaneous velocities, as mea- 
sured in the inertial frame, which vary according to the magnitude of their 
x '  coordinate within the accelerated frame Y.'(x', y ' ,  z', t'). The magnitude 
of the velocity of such a point, according to an observer in the inertial 
frame, we shall denote by Z(x ' ) .  

2. DERIVATION OF THE COORDINATE 
TRANSFORMATION EQUATIONS 

Throughout the paper we shall denote the inertial frame of the labora- 
tory by Z(x, y, z, t) and the accelerating frame by ~ ' (x ' ,  y ' ,  z', t'). We shall 
assume that the origin of Y/is accelerating with an acceleration a = d v / d t  = 
d 2 x / d t  2 with respect to Y~. The force producing this acceleration, as 
measured in Z, will not, in general, be constant with time. The origins of Y. 
and Z' are assumed to coincide at time t = t '  = 0 and v is the velocity of the 
origin of E' as measured in Z and is in a direction parallel to both the x and 
the x '  axes. v will be a function of time. 

Let do '  be the physically measured local spatial line element according 
to an observer in Z'. Hence, since local geometry is Euclidean, 

~2 ~2 do '2 = do "2 + doy + d% (1) 

where do:~, doy, and do.' are the physically measured local spatial line 
elements in the x',  y ' ,  and z' directions, respectively. The physically mea- 
sured local time element in Y.' we shall denote by dT'.  Since these physically 
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measured local elements of space and time must be related by the Lorentz 
transformations to measurements made in the inertial frame, we can write 

do, = ( dx - Z dt ) ( 1 -  Z2 /c  2 ) - , / 2  

do;=dy 

do~=dz  

a T ' =  ( dt - Z dx / c  2 ) ( 1 -  Z2/c  2 ) - , / 2  

(2) 

(3) 

(4) 

(5) 

where Z is the velocity of the observer in E' according to measurements 
made in Y.. Equations (2)-(5) must hold for local physical measurements 
made by observers situated anywhere in E'. Hence, since the accelerated 
frame cannot be perfectly rigid, Z will be a function of x'. The physically 
measured local elements of space and time, do',  do.i, do', and dT', as given in 
equations (2)-(5) must be uniquely related to the coordinate elements of space 
and time dx', dy', dz', and dt' but will be identical to them only at the origin, 
x ' =  O. In order to find these unique relationships we shall firstly assume 
that since the y, z and y', z' coordinates are perpendicular to the direction of 
motion they will be related, as in special relativity, by 

y ' =  y (6) 

and 

z ' =  z (7) 

thus giving, by equations (3) and (4), 

doy = dy = dy' (8) 

and 

d o / =  dz = dz' (9) 

The third spatial line element, do',  will be related to the coordinate 
element, dx', by the relationship 

da, = h( x ' ,  t') dx' (10) 

where h is a function (to be determined) of the coordinates x', t'. dt' does 
not appear in equation (10) because do' is the spatial part of the line 
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element (see, e.g., Atwater, 1974). The proper time element, dT', will be 
related to the coordinate elements of space and time by the relationship 

dT'= f (x ' ,  t') dr'+ g(x',  t') dx' (11) 

where f and g are functions (to be determined) of the coordinates x', t'. 
In Y. the flat space-time of the Minkowski metric is given by 

ds2= c2 d t 2 -  d x 2 -  dy2 -  dz 2 (12) 

Using equations (2)-(5) enables equation (12) to be written in the form 

ds 2 -= c 2 dT '2 - do "2 - doy 2 - do: '2 (13) 

which, together with equations (8)-(11), enables us to write the metric of the 
linearly accelerated system Y/as 

ds2=c2f2 dt'2 + 2 c Z f g d x ' d t ' - ( h 2 - c 2 g 2 ) d x ' 2 - d y ' Z - d z  '2 (14) 

from which the spatial line element can be confirmed to be given by 

do '2 = h2 dx '2 + dy '2 + dz '2 (15) 

in accord with equation (1) and equations (8)-(10). From equations (2) and 
(1o) 

( z21 -'/' d x ' = ( d x - Z d t )  1 - - ~  h- '  (16) 

and from equations (5) and (11) 

( Z 2 ) - 1 / 2 f - l h - '  (17) d t '=[ (h+  g Z ) d t - ( Z h +  gc2)c-2 dx] 1 - - - ~  

Since the whole of the accelerated frame of reference is described by ~', 
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equations (16) and (17) must be exact differentials. Hence, 

Z l - - ~  h -1 O x ' _  
' -~x 1 - c 2  ] 

( Z 2 ) - t / 2 f - , h - ,  ' 
"-~=Ot' (h + gZ) 1 - -~- (18) 

( z2/-'/2c-2I-'h-' Ot" _ ( Zh + gc 2) l -  
ax c 2 ] 

According to an observer in Y. the origin of Y.' will have an equation of 
motion given by x = fdv dt; therefore, assuming a linear (in x) relationship 
between x' and x we can write 

x ' = k ( t ) ( X - f o t v d t  ) (19) 

where k is a function of t only. Differentiating equation (19) gives 

dx'-- -~tx 'k- '  dt + k( dx - v dt) (20) 

Therefore, when x '  = 0, i.e., at the origin of ~.', 

d x ' = k ( d x - v d t )  (21) 

But, we have already stated that the Lorentz transformations must hold for 
the observer at the origin of the accelerated frame of reference even when 
coordinate measurements are used. Therefore, 

dx'= ( dx - v dt ) (1 -  v2/c2 ) - ' /2  (22) 

when x ' =  0, where v is the instantaneous velocity of the origin of Y.' 
according to an observer in Y~. Comparing equations (21) and (22) gives 

k = ( 1 -  vZ/cZ) - ' /2  (23) 

From equations (18), (20), and (23) we can see that 

h = ( 1 -  v2/e 2) ' /2(1-  ZZ/c 2)- ' /2 (24) 
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where 

Z= v(1- Wx') 

W=ac-2 (1 -u2 /c2 )  -I/2 
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(25) 

(26) 

Differentiating equation (32) and using equations (19) and (23) gives 

( ( ) I.)2 19 2 I / 2  
dt' = x'  1 -  --~ dt + j dx + I - -~ dt - jv  dt 

(3o) 

(31) 

(32) 

(33) 

I '=jxq-fot(1--1)2/c2)l/2dl--jfotudl 

and comparing equations (29) and (30) gives 

m ( t ) =  f o t ( 1 - v 2 / c 2 ) | / 2 d t -  J fotvdt 

which, when substituted into equation (27), gives 

f0 t I/2 d/ tx,= 0=  (1--v2/c 2) 

Now, assuming a linear relationship between t' and x we can write 

t '= j ( t ) x  + m( t )  (27) 

wherej  is a function of t only. Using equation (19) to substitute for x into 
equation (27) gives 

t' = jx'(1 -- V2//C2) 1/2 "1- m + j fotV dt (28) 

At the origin of Y.', i.e., when x' = 0, equation (28) becomes 

tx,= o = m + j fotV dt (29) 

If coordinate time and proper time are to be identical at the origin of the ~.' 
coordinate system then, 
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Therefore, when x' = 0, 

d t ' = j d x + [ ( 1 - v 2 / c 2 )  '/2 -- j v ]  dt 

879 

F r o m  
equations between an inertial frame of reference and a linearly accelerated 
frame of reference are 

x ' = ( X - f o t v d t ) ( 1 - v 2 / c 2 ) - l / 2  

y ' = y  

Z*~Z 

t ' = f o t ( 1 - v 2 / c 2 ) l / 2 d t - v c - Z ( 1 - v 2 / c Z ) - l / 2 ( X - f o t v d t )  

(40) 

which reduce to give the transformation equations of special relativity when 

g =  - Z ( 1 - v 2 / Z 2 ) c - 2 ( 1  - Z 2 / c 2 ) - ' / 2 ( 1 - v 2 / c 2 ) - ' / 2  (39) 

equations (6), (7), (19), (23), (32), and (36) the transformation 

(34) 

But, the Lorentz transformations must hold for the observer at the origin of 
the accelerated frame of reference even when coordinate "measurements are 
used. Therefore 

dt '= (dt - o dx Ic  2 ) ( 1 -  v2/c 2) - ' /2  (35) 

when x ' =  0. Comparing equations (34) and (35) gives 

j ( t )  = - v c - 2 ( 1 -  v2/c2) - l / z  (36) 

and equation (33) becomes 

dt '= ( c2Zdt - v z dx )v- 'c-Z(1  - vZ/c z ) - , /2  (37) 

From equations (18), (24), and (37) we find that 

f =  v ( 1 -  Z 2 / c 2 ) ' / 2 Z - ' ( 1 -  o2/cZ) - ' / z  (38) 

and 



v is a constant. Differentiating equations (40) we obtain 

d x ' =  ( dx  -- Z d t  )(  l -- v 2 / c  2 ) -  , /2 

ay' = ay 

dz '  = dz 

d t ' =  ( Zc2 dt - v 2 d x ) ( 1 -  D2 / / r  

and 

in which 

and 

ax  = ( d x ' +  v a , ' ) (1  - v ' - / c2 )  - ' / 2  

ay = ay' 

dz = dz '  

dt =(dt ' - '{-  f.) dx ' / / c  2 ) ( l  - D2/c2) - I / a u G -  1 

z =  ~ ( 1 -  Wx') 

W = ac -2 (1  -- D2/c 2 ) -  I/2 

Hence, the metric of the linearly accelerated system Y,' is given by 

as 2 = c2v2Z - 2 ( 1 -  Z2//c  2 ) ( 1 -  v2//c 2)-Iat '2  

- 2 v ( 1  - vZ/Z2)(1 - v 2 / c  2 ) - ' d x ' d t '  

- ( 1 - -  ~4//c2Z2 )(1-- ~92//c2 ) -I dx '2 

-- dy '2 - dz'2 

and the spatial line element is 

do  '2 = (1 - v2/c2)(1 - Z 2 / c 2  ) -  ' dx  "2 + dy '2 + dz '2 
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(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
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The above transformation equations can now be used to evaluate the 
transformation equations, between ~ and ~', of velocity and acceleration. 

3. TRANSFORMATIONS OF VELOCITY AND 
ACCELERATION 

If we let the components of the velocity of a moving body with respect 
to the inertial frame, Y., be given by 

dx dy dz (47) 
qx = --~ , q v=--d-i ,  G = --~ 

and the components of velocity of the same body with respect to the 
accelerated system, Y.', be given by 

d.x' _ dy '  q : _  dz '  (48) 
q"~ = - ~  ' q.; - -3[ 7 '  " dt '  

then, from equation (42) we have that 

, - 2  t~ -I 
q . , . = ( q . , . + v ) Z v - l (  l + v c  qx)  

- 2  , q y = q . ' v ( 1 - - v 2 c - 2 ) ' / 2 Z v - I ( l + v c  qx) -1 

(49) 

(50) 

and the z transformation can be obtained by replacing y by z in equation 
(50). Setting a = 0 in equations (49) and (50) we obtain the velocity 
transformation equations of special relativity. 

Similarly, if the components of acceleration of a moving body with 
respect to Y. are given by 

d 2 x  d 2 y  d2z  
(51)  a x = ay = a .  - dt 2 ' dr2 ' . dt2 

and the components of acceleration of the same body with respect to Y/are 
given by 

d 2 x '  d 2 y '  a'  - d2"z' 

a ' x -  clt, 2 , a ; v -  d t , 2 ,  . dr,2 (52) 
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then, by differentiating equations (49) and (50) we obtain 

. . . . .  { (02) (v )dw (1 -- v21c2) '/2 ax(1-- Wx') 1 - + X'qx 1 - 
a'~= (1 -Wx ' -vq~ lc2 )  3 -~ --~ dt 

+ 2q x: ,l , ,  wx 2]} ,53, 
(1_v2/c2_____~) { , vq x qya~V ,dW 

a y - ( l _ W x , _ v q x / C 2 )  3 a y ( 1 - W x - - - ~ - ) + - - - ~ + q y x  -~ 

+ 2qy[ qx -  v (1 -  W x ' ) ] a ( 1 - :  ) - 'c -2} (54) 

and the z transformation can be obtained by replacing y by z in equation 
(54). Setting a = 0 in equations (53) and (54) we obtain the acceleration 
transformation equations of special relativity. 

The above velocity and acceleration transformation equations are ap- 
plicable to transformations between physical measurements of velocity and 
acceleration in Y. and coordinate measurements of velocity and acceleration 
in Y'. Transformation equations between physical measurements of velocity 
and acceleration in Z and physical measurements of velocity and accelera- 
tion in E' are obtained by denoting 

do" do; do: (55) 
Q'x = dT" Q'y = dT" Q'z = dT' 

as the components of velocity as physically measured in Y.' and 

d2ax d20y d2a; 
A'~ = dT,2 , A'y- dT,2, A " -  dT,2 (56) 

as the components of acceleration as physically measured in E'. Thus, 

Q ' = ( q x - z ) ( 1 - Z q x / C 2 )  - '  (57) 

Qy = qy(1-  Z2/c 2 ) ' /2(1- zqx/c  2 )-i  (58) 



Linearly Accelerated Frames of Reference 883 

and the z transformation can be obtained by replacing y by z in equation 
(58). Equations (57) and (58) are identical in form to the velocity transfor- 
mation equations of special relativity when Z is replaced by v. The velocity 
of a point at rest in the inertial system ~, according to physical measure- 
ments made in E', is given by setting qx = qy --- qz = 0 in equations (57) and 
(58), giving 

v'l = Q'x = - z ,  Qy = O, Q'z = 0 (59) 

where v~ is the velocity of E according to physical measurements made in 
E'. The velocity v~ of E' according to physical measurements made in Y~ is 
found by setting Q'x -- Q~ -- Q~ = 0 in equations (57) and (58), giving 

v~ = qx = Z, qy = 0, qz = 0 (60) 

thus giving a symmetrical velocity relationship between the accelerated 
frame and the inertial frame. Similarly, 

A' x = [ a x ( 1 -  Z21c 2 ) - ( 1 -  q~ /c  2) dZIdt] ( 1 -  Z2/c 2 ) ' /2 (1-  Zqx Ic  2)-3 

(61) 

A'y=[a.v(1-- Zq~/c2)+ qyZax/C 2 

+ qy(q~ - Z ) c - 2 ( 1 -  Z21c 2)- '  d Z / d t ] ( 1 -  Z2/c 2 ) ( 1 -  Zqx/C 2)-3 

(62) 

and the z transformation can be obtained by replacing y by z in equation 
(62). The acceleration of a point at rest in the inertial system Y., according to 
physical measurements made in Y,', is given by equation (61) as 

A; = - (1 - Z2/c 2) ' /2dz /d t  = - dZ/dT '  (63) 

and the acceleration of a point at rest in the accelerated system, according 
to physical measurements made in ~, is given by equation (61) as 

a~ = (1 -- Z2/c 2 )1/2 dZ /dT '=  dZ/dt  (64) 

The inverse velocity and acceleration transformations may be obtained from 
equations (57), (58), (61), and (62) by interchanging the primed and un- 
primed variables and replacing Z by - Z .  Also, from equations (59) and 
(60) it can be seen that the accelerated system has a physical boundary at 
x r = W  -I. 
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4. CONCLUSIONS 

It is a well-known result of relativity theory that it is impossible to 
accelerate a perfectly rigid body. It is therefore to be expected that all points 
in an accelerating frame of reference moving parallel to the x axis of an 
inertial frame will have instantaneous velocities, as measured in the inertial 
frame, which vary according to the magnitudes of their x'  coordinates 
within the accelerated frame. The magnitude of this velocity, Z(x'), is given 
by equation (43). 

The coordinate transformations between all points in the inertial sys- 
tem and all points in the accelerated system are given by equations (40), 
which are the only set of equations which satisfy the following criteria: 

(1) They give the correct classical equations when v << c. 
(2) In differentiated form they reduce to give the transformation 

equations of special relativity when a = 0 and also when x' = 0. 
(3) They give the accepted expression for the proper time at x ' =  0, i.e., 

C: fo'(l-v2/c2)'/2 dt 

(4) They reduce to give the transformation equations of special relativ- 
ity when v is a constant. 

(5) Physical local measurements of elements of space and time when 
made at any arbitrary point within the accelerated system are related by the 
Lorentz transformations to measurements made in the inertial frame. Equa- 
tions (2)-(5) ensure that this is true for the set of transformations given in 
equations (40) and in doing so define an accelerated frame of reference Y.' 
as a frame of reference whose x' axis is moving parallel to the x axis of an 
inertial frame with velocity Z(x'). The magnitude of Z is given by equation 
(43). 

(6) Any observer within the accelerating system must find that the 
geometry within his immediate infinitesimally small locality is Euclidean. 
This condition is automatically fulfilled when condition (5) is satisfied. 

Conditions (1)-(6) above must be met by any set of transformations 
between accelerated and inertial frames of reference. The transformations of 
equation (40) are the only set of equations which obey the above set of 
conditions while maintaining a linear relationship between x' and x and 
between t' and x. However, these are only coordinate transformation equa- 
tions and the coordinates x', t' do not correspond to physical measurements 
at points other than the origin of the accelerated system. On the other hand, 
if real, physical measurements are made by an observer who is fixed at any 
point in the accelerated system then any measurements he makes of distance 
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and time within his own infinitesimally small locality must yield the same 
values as those obtained by assuming that a Lorentz frame is instanta- 
neously coincident with, and traveling at the same velocity as, this observer, 
i.e., the instantaneous relationship between infinitesimal length and time 
measurements made by this accelerated observer and those made by an 
inertial observer must be given by the Lorentz transformations with the 
velocity set equal to Z, i.e., equations (2)-(5). The link between the 
coordinates of each and every one of such possible observers within the 
accelerated system is given by the metric of equation (45), and the coordi- 
nate points within this metric are related to the coordinate points in the 
inertial frame by means of equation (40). The fundamental equations 
(2)-(5) and (40)-(46), therefore, not only provide a set of transformation 
equations between an inertial frame of reference and an accelerated frame 
of reference-- they also define the metric of the accelerated system and 
unambiguously define the physical nature of the accelerated frame of 
reference. The accelerated frame of reference has a physical boundary at 
x ' =  W-I,  which means that when v = c, x ' =  0. In other words, it is impos- 
sible to further accelerate any body of finite size when its velocity relative to 
any given inertial frame is already equal to the velocity of light. 

The metric of equation (45) can readily be shown to be identical to the 
local coordinate system of an accelerated observer as given by Misner, 
Thorne, and Wheeler (1973) when v = 0 and Wx'<< 1. This is to be expected 
since their coordinates are relative to a comoving inertial frame in which the 
accelerated observer is momentarily at rest. 
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